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Abstract

A high-order alternating direction implicit (ADI) method for computations of unsteady convection–diffusion equations
is proposed. By using fourth-order Padé schemes for spatial derivatives, the present scheme is fourth-order accurate in
space and second-order accurate in time. The solution procedure consists of a number of tridiagonal matrix operations
which make the computation cost effective. The method is unconditionally stable, and shows higher accuracy and better
phase and amplitude error characteristics than the standard second-order ADI method [D.W. Peaceman, H.H. Rachford
Jr., The numerical solution of parabolic and elliptic differential equations, Journal of the Society of Industrial and Applied
Mathematics 3 (1959) 28–41] and the fourth-order ADI scheme of Karaa and Zhang [High order ADI method for solving
unsteady convection–diffusion problem, Journal of Computational Physics 198 (2004) 1–9].
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The unsteady convection–diffusion equation for a variable / in two-dimensional space can be written as
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where X � R2 is a rectangular domain, (0,T] is the time interval, and /0 and f are the initial and boundary
conditions. a and b are arbitrary coefficients describing the boundary condition as a Dirichlet, Neumann,
or Robin type in the boundary normal direction n. cx(y) and mx(y) denote the convection velocity and viscosity
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in the x(y)-direction, respectively. This equation is commonly encountered in physical sciences governing the
transport of a quantity such as mass, momentum, heat, and energy.

Finite difference schemes have been widely used to solve the equation using combinations of various spatial
and temporal discretization methods [1–9]. Among them, the alternating direction implicit (ADI) method pro-
posed by Peaceman and Rachford [1] has been popular due to its computational cost-effectiveness. However,
like other first- and second-order accuracy schemes, the Peaceman–Rachford ADI (PR-ADI) scheme, which is
second-order accurate, often produces significant dissipation and phase errors, especially for convection-
dominated problems [2]. In [7–9], iterative or non-iterative multistep methods were combined with the ADI
method to achieve higher-order temporal accuracy.

To achieve higher spatial accuracy, recently, the high-order compact (HOC) scheme [10] has been utilized
for spatial discretizations. This scheme leads to fourth-order accurate approximations. Furthermore, the
HOC scheme produces non-oscillatory solutions for the steady homogeneous convection–diffusion equation
[4]. Other classes of high-order compact schemes which have different weighting parameters have been
derived by Rigal [5]. For solving unsteady convection–diffusion equations, the HOC scheme has been uti-
lized in a number of different ways. Noye and Tan [6] developed a third-order nine-point HOC scheme
for unsteady convection–diffusion equations, and later, Kalita et al. [3] increased the order of accuracy
to fourth-order using the same bandwidth of stencil. The ADI approach was not employed in those meth-
ods, and therefore, computational costs were significantly higher than that of the PR-ADI method. The
computational efficiency of the ADI approach and high-order accuracy of the HOC scheme were combined
in the method proposed by Karaa and Zhang [2]. The high-order compact ADI (HOC-ADI) scheme retains
the tridiagonal algorithm of the standard ADI [1], and at the same time, achieves fourth-order accuracy in
space.

Although a number of test problems at relatively low cell Reynolds numbers (Pe = cx(y)hx(y)/m
x(y), where

hx(y) is the grid spacing) were considered in the HOC-based schemes [2,3,6], interestingly, the characteristics
of the schemes at high cell Reynolds numbers and the resulting numerical errors in terms of phase and ampli-
tude were not discussed. Many fully implicit and semi-implicit algorithms for solving Navier–Stokes equations
also utilize the computational effectiveness of the ADI-type approach (e.g. [11–14]). Therefore, Navier–Stokes
solutions will be one of the most promising applications of ADI methods with high-order spatial accuracy. It
is well known that, in turbulent flow computations using direct numerical simulation or large eddy simulation,
numerical dissipation induced by artificial diffusion or by truncation errors of the numerical scheme signifi-
cantly degrades the solution quality [15]. As will be shown in the present study, HOC-based schemes suffer
from excessive numerical dissipation at high cell Reynolds numbers.

In this note, a Padé scheme-based ADI (PDE-ADI) method is proposed. The present scheme employs the
standard fourth-order accurate approximations for first and second derivatives in the convection–diffusion
equation, while retains second-order accuracy in time utilizing the efficiency of tridiagonal algorithms. Fur-
thermore, in contrast to the HOC-based schemes in which the phase and amplitude characteristics of a solu-
tion are altered by the variation of cell Reynolds number, the present method retains the characteristics of the
modified wave numbers for spatial derivatives regardless of the variation of cell Reynolds number.

The superiority of the proposed scheme compared to other ADI schemes [1,2] for solving unsteady convec-
tion–diffusion equations is discussed in detail.
2. High-order Padé ADI scheme

Applying the Crank–Nicolson scheme and the ADI factorization for time integration of Eq. (1) results in
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In the HOC-based schemes [2–4,6], the convection–diffusion terms in each direction are approximated with
fourth-order accuracy as follows:
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where dx and d2x are the second-order central difference operators for first and second derivatives, respectively.
HOC approximations as given in Eq. (4) are incorporated into the ADI factored Eq. (2) to complete the HOC-
ADI scheme proposed by Karaa and Zhang [2]. This method is unconditionally stable and retains fourth-
order accuracy in space and second-order accuracy in time. Also, the HOC-ADI scheme equipped with
tridiagonal algorithms results in a significant computational cost saving compared to other non-ADI-based
iterative HOC schemes [3,6] (see [2] for more details).

Two important observation can be made about Eq. (4). First, the cell Reynolds number is present in the
stencil coefficients. This feature results in a non-oscillatory solution by adding numerical dissipation
depending on the cell Reynolds number for the steady homogeneous convection–diffusion equation [4].
However, the non-oscillatory feature is not guaranteed in unsteady problems [4], and as will be shown
in this note, the scheme produces significantly enhanced dissipation in cases of high cell Reynolds numbers.
The other point is that the approximation becomes singular for pure convection problems (mx = 0), while
for pure diffusion problems (cx = 0), the HOC approximation becomes the standard fourth-order Padé
scheme.

To examine the characteristics of the HOC scheme in more detail, a modified wave number analysis of Eq.
(3) is performed. The modified wave number analysis allows one to assess how well different frequency com-
ponents of a harmonic function in a periodic domain are represented by a finite-difference scheme [16]. Replac-
ing the difference operators in Eq. (4) with modified wave numbers for second-order central differences results
in
kHOC ¼ icxk1 þ mx 1þ Pe2x
12
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For comparison, the standard second-order central difference (CD) and fourth-order Padé (PDE) approxima-
tions of Eq. (3) are also considered, for which
kCD ¼ icxk1 þ mxk2; ð6Þ

kPDE ¼ icxk̂
1 þ mxk̂

2
; ð7Þ
where k1 = sinkhx/hx, k
2 ¼ ð2� 2 cos khxÞ=h2x , k̂

1 ¼ 3 sin khx=hxð2þ cos khxÞ and k̂
2 ¼ 12ð1� cos khxÞ =h2xð5þ

cos khxÞ.
Fig. 1 shows the real and imaginary parts of ks as functions of khx for two different cell Reynolds num-

bers. In the case of Pe = 0.1, shown in Fig. 1(a), the real parts for both the HOC and Padé schemes are
almost indistinguishable, while the Padé scheme shows better resolution than the HOC scheme in the
imaginary parts of k. Both schemes show better resolution properties than the second-order central differ-
ence scheme. However, if the cell Reynolds number is increased to 10, the HOC scheme dramatically
increases dissipation error (Real(k)) and produces a significant overshoot in the imaginary part of k
(see Fig. 1(b)). This suggests that the solution quality of the HOC scheme is highly dependent on the cell
Reynolds number. Especially, at a high Reynolds number, significant numerical dissipation is expected
which is undesirable in turbulent flow computations using direct numerical simulation or large eddy sim-
ulation [15].

In contrast to the HOC scheme, the Padé scheme-based algorithm does not alter its non-dissipative char-
acteristics with the cell Reynolds number. However, the tridiagonal matrix algorithms are not retained if we
apply the Padé approximations directly to Eq. (2). To overcome this deficiency, further factorizations are
made without loss of temporal accuracy,
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Fig. 1. Real and imaginary parts of k for three numerical schemes: (a) Pe = 0.1 and (b) Pe = 10. ——, PDE; - - - -, HOC; . . . . . . ., CD;
-�-�-�-�-�-�, exact.
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where the spatial derivative terms are approximated with the standard fourth-order Padé schemes. For
instance, the first and second derivatives in x-direction are approximated as
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or in matrix–vector notations,
LxU;x ¼ AxU;

LxxU;xx ¼ BxxU.
ð11Þ
The same approximations are also applied to the spatial derivative terms in y-direction.
In matrix–vector notation, Eq. (8) becomes
L�1
x Tþ

x L
�1
xx T

�
xxL

�1
y Tþ

y L
�1
yy T

�
yyU

nþ1 ¼ L�1
x T�

x L
�1
xx T

þ
xxL

�1
y T�

y L
�1
yy T

þ
yyU

n; ð12Þ
where
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The solution procedure only consists of a number of multiplications and inversions of tridiagonal matrices,
and this makes the computation efficient compared to other non-ADI-based schemes [3,6] which require iter-
ative methods for solving banded sparse matrices (also see [2] for the comparison of computational costs for
ADI and non-ADI-based schemes). From Eqs. (9)–(11) and (13), it can be easily shown that T þ

xðyÞ and T�
xxðyyÞ

are non-singular tridiagonal matrices.
The present factorization retains the wave number characteristics discussed in Fig. 1 with OðDt2Þ accuracy.

Consider subsets of the factored Eqs. (2) and (8)
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It can be easily shown that modified wave number spectrums for Eqs. (14) and (15) are equivalent by second-
order temporal accuracy:
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The von Neumann stability analysis is performed to examine the stability of the scheme. By assuming
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It can be easily shown that the criterion |r| 6 1 is satisfied for all ax(y), bx(y). Therefore, the new scheme is
unconditionally stable.

Extension of the present ADI method to a three-dimensional problem and a system of equations can be
made as the same way for PR-ADI [1] or HOC-ADI [2] methods except for the additional factorization in
the advection and diffusion steps. Stability and convergence of the present ADI method for linear and non-
linear systems of equations can be proved by applying the same approach used for PR-ADI method [17].
To demonstrate the potential of the present Padé-ADI method for three-dimensional nonlinear systems, a for-
mulation for the incompressible Navier–Stokes equations are presented in Appendix A.

Forward or backward differences can be employed to impose Dirichlet, Neumann, or Robin type boundary
conditions retaining the bandwidth and the strict diagonal dominancy of the matrices [1,2,4]. Mattsson and
Nordström [18] showed that two and one orders less accurate boundary closures for the second and first deriv-
atives terms, respectively, can maintain the internal order of accuracy. It is also worth noting that a strong
stability of the present ADI scheme for non-periodic boundary conditions can be achieved by employing
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the simultaneous approximation term (SAT) procedure [19,20]. The SAT procedure is a penalty method,
where the penalty parameters are determined by stability considerations (see [18–22] for details).

3. Numerical examples

To examine the validity and effectiveness of the present high-order Padé ADI method, an unsteady problem
concerning the convection–diffusion of a Gaussian pulse in the square domain [0,2] · [0,2] is considered with
the following initial condition [2]:
Fig. 2.
. . . . . . .
/ð0; x; yÞ ¼ exp �ðx� 0:5Þ2

mx
� ðy � 0:5Þ2

my

 !
. ð19Þ
An analytical solution to this problem is
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The Dirichlet boundary conditions are taken from the analytical solution.
A uniform grid of hx = hy = 0.025 is employed to compare the accuracy of the computed solutions from the

present Padé-ADI, the HOC-ADI, and the PR-ADI schemes. The viscosity values are fixed at mx = my = 0.01.
Two cell Reynolds numbers of Pe = 2 and 200 are considered by setting convection velocities cx = cy = 0.8
and cx = cy = 80. Constant times step sizes of 2.5 · 10�3 and 2.5 · 10�5 are used for Pe = 2 and 200,
respectively.

Fig. 2 shows L2-norm errors of the computed solutions at Pe = 2 with respect to the exact solution at each
time step. The present ADI scheme produces a significantly more accurate solution than other schemes com-
pared. Less accurate predictions of the HOC-ADI scheme are mainly due to phase errors as expected through
the modified wave number study (see Fig. 1(a)). The PR-ADI method shows significantly higher magnitudes
of L2-norm errors. In [2], in this case, it was shown that the PR-ADI method cannot achieve the same order of
L2-norm errors of the HOC-ADI scheme even with twice the grid resolution. Numerical solutions are com-
pared with the exact solution at the final time step (t = 1.25) in Fig. 3. Solutions obtained from the present
ADI (Fig. 3(b)) and the HOC-ADI (Fig. 3(c)) schemes are visually indistinguishable from the exact solution
(Fig. 3(a)). However, noticeable phase differences are observed between the PR-ADI solution (Fig. 3(d)) and
the exact solution.

The superiority of the present ADI scheme is more clearly observed in the high cell Reynolds number case
(Pe = 200). Fig. 4 shows contour plots of the numerical and exact solutions at t = 0.0125. The present ADI
scheme produces a solution in good agreement with the exact solution in terms of amplitude and phase
L2-norm errors produced by three numerical schemes at each time step: ——, present ADI scheme; - - - -, HOC-ADI scheme [2];
, PR-ADI scheme [1]. Dt = 0.0025, Dx = Dy = 0.025, cx = cy = 0.8 and mx = my = 0.01.



Fig. 3. Contour plots of the pulse in the region 1.2 6 x,y 6 1.8 at t = 1.25: (a) exact, (b) present ADI, (c) HOC-ADI [2], and (d) PR-ADI
[1]. Dt = 2.5 · 10�3, Dx = Dy = 0.025, cx = cy = 0.8 and mx = my = 0.01. Dotted contour lines in (b)–(d) correspond to the exact solution.
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(Fig. 4(a) and (b)). However, the HOC-ADI scheme and the PR-ADI scheme lead to significantly dissipated
solutions which are also highly distorted and oscillatory (Fig. 4(c) and (d)). In particular, the enhanced numer-
ical dissipation makes the HOC-ADI scheme unattractive for direct numerical simulations or large eddy
simulations of turbulent flows. The distortions and oscillations are in opposite-direction in the solution of
HOC-ADI and PR-ADI schemes, and this feature is explained by the characteristics of the imaginary parts
of the ks for a high cell Reynolds number case (see Fig. 1(b)).

At Pe = 200, the three numerical schemes are compared quantitatively in Table 1. The present ADI scheme
shows a much smaller L2-norm error than those of other ADI schemes. However, in contrast to the case of
Pe = 2, the L2-norm error of the HOC-ADI scheme is not significantly lower than that of the PR-ADI
method. A disadvantage of the present ADI scheme is the higher computational cost due to the increased



Fig. 4. Contour plots of the pulse in the region 1.2 6 x,y 6 1.8 at t = 0.0125: (a) exact, (b) present ADI, (c) HOC-ADI [2], and (d) PR-
ADI [1]. Dt = 2.5 · 10�5, Dx = Dy = 0.025, cx = cy = 80 and mx = my = 0.01.
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number of factorizations of the governing equation. However, it is worth noting that, at this high cell Rey-
nolds number, the present scheme produces better results than the HOC-ADI scheme employing the double
mesh size.
Table 1
L2-norm errors at t = 0.0125 and CPU times used for numerical integrations

Scheme L2-norm error CPU time
CPU time for PR�ADI

PR-ADI [1] 3.29 · 10�4 1.0
HOC-ADI [2] 1.82 · 10�4 1.4
Present ADI 7.68 · 10�6 2.2

Dt = 2.5 · 10�5, Dx = Dy = 0.025, cx = cy = 80 and mx = my = 0.01.
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4. Concluding remarks

A high-order alternating direction implicit (ADI) method for computation of unsteady convection–diffu-
sion equations has been proposed. The Padé approximations of spatial derivatives lead to fourth-order accu-
racy with high resolution properties in space, while second-order accuracy is maintained in time. The solution
procedure consists of a number of multiplications and inversions of tridiagonal matrices which are computa-
tionally cost effective. The present method is unconditionally stable and produces more accurate solutions in
terms of phase and amplitude errors than the standard second-order ADI method [1] and the fourth-order
HOC-ADI scheme [2]. In particular, it does not introduce numerical dissipation which is significant in the
convection-dominated case when other previous ADI schemes are employed.
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Appendix A. Padé ADI method for incompressible Navier–Stokes equations

Consider the incompressible Navier–Stokes equations in the conservative form:
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Applying the Crank–Nicolson scheme and the fractional-step method [23] to Eq. (A.1) leads to
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where / is referred to as the pseudo-pressure and is different from the original pressure p by
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Eq. (A.2) can be recast as
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ûiûj �
1

Re
d2

dxjdxj
ûi
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Applying a Newton-iteration method to Eq. (A.7) leads to
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where dûrþ1
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j � ûrj, r is the iteration index, and j = 1,2,3. Then
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oûj

d
dxj
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and we introduce a matrix of the form
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Now we split Mij ¼ ðM1
ij þM2

ij þM3
ijÞ into three parts each containing x1, x2 and x3-derivatives, respectively.

Using an ADI factorization technique, Eq. (A.9) becomes
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where j = 1 for j 6¼ i and j = 0 for j = i with j = 1,2,3. No summation rule is repeated on i (= 1,2,3). dû�j is
updated during the iteration step. The factored terms in the left-hand side of Eq. (A.11) become tridiagonal
matrices when the spatial derivatives are approximated by the second-order central differences. Inversions of
the tridiagonal matrices result in a significant reduction in computing cost and memory. This formulation has
been successfully employed in a number of direct- and large-eddy simulations of turbulent flows [11–13].

Interestingly, Visbal and Gaitonde [14] employed second-order central differences and fourth-order Padé
schemes for the spatial derivative terms in the left- and right-hand sides of Eq. (A.11) to obtain global
high-order spatial accuracy. Second-order central differences for the factored terms were necessary to retain
the efficiency of tridiagonal matrix operations. The present ADI method allows the use of fourth-order Padé
schemes for the left-hand side factored terms maintaining the efficiency of tridiagonal matrix operations.
Applicability of the present ADI method is considered for the case of i = 1 as:
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ðû2dû1Þ �
1

Re
d2

dx2dx2
dû1;

M3
11dû1 ¼

d
dx3

ðû3dû1Þ �
1

Re
d2

dx3dx3
dû1;

M12dû2 ¼
d
dx2

ðû1dû2Þ;

M13dû3 ¼
d
dx3

ðû1dû3Þ.

ðA:13Þ
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